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Abstract. Interactions between fluid membranes are studied by renormalization group 
~techniques. To make the m - f l o w  condition at the origin compatible with the renormalization, 
there should be a non-mnormalirqbb region near the oripin. The renormalization procedure 
involving such a region picks up an inhomogeneous contribution which will also be recast 
during the renormalization. This paper gives an example to show how the morphology of the 
fixed-point potential undergoes a series of transitions due to this inhomogeneous contribution. 

The shape of fluid membranes and the interactions between membranes a e  of fundamental 
significance in biological processes such as assembles of cells, communication among 
cells etc [l]. Membranes in solution exhibit direct interactions such as Van de Waals, 
hydration and electrostatic forces [2]. In addition, membranes suffer shape fluctuations 
due to thermally-excited modes, which represent an effective repulsive interaction ind 
renormalize the direct interactions [2,3]. From a physical point of view, synthesizing these 
interactions is a challenging problem, because it involves many scales from the size of the 
molecules (1 nm) to the size of the membrane (typically 1-10 Cm). As adding these forces 
together cannot directly give the right answer, one is naturally led to study the behaviour of 
the interactions under scaling transformations. Provided the shape fluctuations are scaling 
invariant,~the renormalization group technique has been applied to this problem and had a 
number of successes. For example, a general nonlinear renormalization group method was 
developed in 141 and a whole line of fixed-point potentials was obtained in which several 
subregimes could be discriminated [5]. In the strong fluctuation subregime, the membrane 
undergo a second-order transition from a bound state to an unbound state. Multicritical 
phenomena were also found when the dimension approaches three [6]. Earlier three very 
different scaling behaviours were predicted by the linear renormalization group for wetting 
transitions  in^ d = 2 f 1 [7]. An exact result for d = 1 + 1 wetting transitions was also 
obtained by the transfer-matrix method [S, 91. Recently, a new renormalization group theory 
was developed to study wetting transitions in d = 2f 1 [lo]. To proceed, I follow [4,5] to 
let x = ( x ’ ,  x 2 , .  . .) be the longitudinal coordinates and l ( x )  the local separation between 
two membranes. Two lengths are of interest: LII the longitudinal correlation length; and 
LI the Wansverse correlation length. The roughness exponent C describes the fluctuations 
of a free membrane or interface, for lateral distance Lll, the typical value of LA scales as 
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LI - Li .  For fluid membranes in d = 2 + 1, f = 1. For (d - 1) dimensional interfaces, 

For two parallel segments of a membrane or interface, the effective Hamiltonian reads 
< = 4 ( 3 - d ) .  

as 

For membranes, n = 2, a d  K is the effective bending rigidity; for interfaces, n = 1 

Provided shape fluctuations are scaling invariant, the uniquely correct scaling 
and K is the interface stiffness. u [ l ( x ) ]  is a direct potential. 

transformations are: 

where b > 1 is a scale constant. 
In the infinitesimal limit, a very simple fixed-point equation for the potential was 

obtained in [4]. The next step is to integrate the fixed-point equation with the appropriate 
boundary condition. In [5] ,  a boundary condition was added as a wall u ( l )  = 00 for I < 0 
and the integration was from an asymptotic solution near the wall. In [l I], for a symmetrical 
potential, the boundary condition was supplemented as u(0) = constant av(O)/aI = 0. 

Now let us point out the problems in this procedure. 
First, the procedures change the zero-flow condition at l ( x )  = 0. The zero-0ow 

condition is that the directional derivative of the energy-momentum tensor across the 
plane l ( x )  = 0 is zero. Certainly, there is no energy-momentum flow crossing the plane 
l ( x )  = 0 during the renormalization while the membranes remain at their former positions. 
Membranes cannot be penetrated through each other. Unfortunately, previous procedures 
break this requiremenr. moving the wall or changing the potential at l ( x )  < 0. In two- 
dimensional conformal field theory, the zero-flow condition will lead to non-trivial results 
€121. 

Second, the procedures change the direct potential near l ( x )  = 0 drastically. From 
a physical point of view, the potential near l ( x )  = 0 is determined by the membranes 
themselves and it is impossible to obtain them from the fixed-point potential equation of the 
renormalization group based on scaling invariance. Note that the membranes arrive at this 
region at a very small probability and when membranes anive at this region, most shape 
fluctuations are suppressed, so, by causal law, shape fluctuations will induce a very small 
effective repulsive interaction. In addition, this problem is basically a classical one, a finite 
potential is sufficient to prevent the membranes from penetrating each other. 

So, it seems to me that both the renormalization and the supplemented boundary 
condition near l ( x )  = 0 are possibly problematic; in particular it will be difficult to 
involve the zero-flow condition in the renormalization procedure. In this paper, I tentatively 
proposed a new renormalization procedure in which the zero-flow condition is automatically 
preserved but at the expense of an inhomogeneous item invoIved in the renormalization. 

I suggest a new renormalization procedure as follows. 
(i) There exists a small region which cannot be renormalized by shape fluctuations, and 

in which the Hamiltonian is generally unknown. The potential in this region should be 
great enough to prevent penetration. Hence, the zero-flow condition will automatically be 
satisfied during renormalization. 

(ii) Such a rigid region 'twists' renormalization and contributes a non-zero item to the 
potential during renormalization. ~ 

(iii) To protect the group property, the twisting contribution will also be recast during 
renormalization. 
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In what follows, I will use linear renormalization group theory as an example to show 

In linear renormalization theory, the potential recursion equation is [4,7,11] 
how to realizc this new procedure. 

where z = btl and b > 1 a scale factor 

-- - kBTa(b - I )  n = 1, d = 2 
YCK ~~ ~~ 

- -_  kBTaq(b2-11) n = 2 , d = 3  
YCK (4) 

where A l / a  is the large momentum cut-off and a the short-distance cut-off. 
In the non-renormalizable region, after recovery of scale, the Hamiltonian is the 

same (suffering no renormalization), so the zero-flow condition is automatically satisfied. 
However, renormalization will change the boundary of the rigid region and the matching 
condition between the direct potential and the rigid region: to compensate for this, the rigid 
region will 'twist' any renormalization imeversibly. So, I insert an item R(b)f")(z) which 
represents this twisting effect on the renormalization into the recursion equation (4) and 
transform it into 

where R(b) is a scaling factor. 
The twisting effect depends on both the direct potential and the specific renormalization 

procedure. To keep the procedure simple at this stage, in this paper I assume that at every 
step the rigid region twists renormalization locally, i.e. the f ( z )  are short-range functions. 
Hence, to linear order, I assume that the f ( z )  are independent of the direct potential and 
are only subject to the constraints of the renormalization group. Then to protect the group 
property, f")(z) is 'renormalid as 

At the end of this paper, I will discuss the validity of this linear approximation. Using 
the relation from (4), 

Z2(bi)b;' + Z2(bz) = Z2(bibz) 

and selecting 

R(bd + W z )  = R(bib2) 

one can easily prove the semigroup property of the recursion. 
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- p l  =l,p2=0,ps=O 

-b z 10 Bigure 1. Three parts of the FPP. 

In the infinitesimal limit b = est(& + 0) and setting lims,-,oR(b)/St = 1, we obtain 
two very simple flow equations: 

I 2 a2 
at  ai ai2 
_-  a"(') - (d - l ) u ( l )  +[,avo + jA -U(') + f(l)  

1 2 a2 
a t  a i 2  
_-  a'(') - (d - l)f(l) + <lT + S A  - - f ( l )  

where 

Expressed in dimensionless variables z = m / A ,  the fixed-point potential (FPP) 
equations read as 

It i s  interesting to see the non-trivial results from this procedure. Equation (10) has two 
linearly independent solutions: 

dz. 1 2  ql =zexp(-?z ) rpz =zexp(-f2) 

Let us confine ourselves to the short-range solution ql,  then we have 

~ ( z )  = p,zexp(-fz2) 

It is more convenient to integrate (9), incorporating F ( z )  and the boundary condition 

The three parts of U ( z )  are schematically represented in figure 1. 
as u(0) = -p2, aU(O)/az = pl. 
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F i p  2. Morphological msitions of mp (pi = 0, pr = I). 

The first part in (13) is short-ranged, the second and third parts are both long-ranged 
and decay as l / z z  at large z. 

When the three constants change, the morphology of the FPPs can undergo transitions 
and several series can be identified. 

(i) Series 1. pz = 0 or p s  = 0. This series falls into competition between a short-ranged 
and a long-ranged part. There is always a maximum or a minimum if pz  # 0 or p s  # 0. 

(ii) Series 2. p1 = 0. There is no short-range part. We can set pz = 1 or ps = 1, 
and change ps  or pz,  we have a series of morphological transitions (see figure 2). The 
parameter values above the arrows are the critical values at which the transitions occur. 

(iii) Series 3. p1 = 1 pz > 0. We can set pz, and vary p s  to see the morphological 
transitions of the FPPS. It is interesting to see a bifurcation. When pz e p f  = 11.18, the 
morphological transitions only involve the creation or annihilation of a minimum far away 
from the origin as in figure 3. 

- 

- 
40 

10 10 
- 

Figure 3. Morphological transition of mP (pi = 1, pz = 1). 
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when p2 > p t  = 11.18, the transitions also involve the creation and annihilation of 
a maximum-minimum pair. One should notice that the transition below p t  = 11.18 is 
preserved when p2 > p t  = 11.18 (see figure 4 the first small figure shows the values of 
ps at which the transitions take place). 

ps-0 

ps=23.54 >=I s u o  -5 

-1 

Figure 4. Morphological transitions of FPP (pi = 1. pz = 12). 

(iv) Series 4: p1 = 1, pz < 0. When p2 > 82 = -1.4, the transition involves the 
creation or annihilation of a minimum as in figure 5. When pz < p2 = -1.4, the transitions 
transform into another form in which a minimum is preserved and involve the creation or 
annihilation of a maximum-minimum pair. The first small figure in figure 6 shows the 
values of p s  at which the transitions take place. 

- 

St \ ps.798 
3 

0 0 

1 0 2 ,b 
Figure 5. Morphological transitions of FPP (pi = I ,  m c 0). 
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- 

Figure 6. 'Morphological transitions of FPP (pj = 1, p2 = -5). 

Now, it is time to explain some points. Because of the linear superimposition principle, 
setting p1 = 1 does not mean that generality is lost. Changing all the signs of PI, pz 
and p s  is also meaningful. The real meaning of the morphological transitions of the 
fixed-point potentials is the creation or/and annihilation of extremes. The way in which 
a maximum, minimum or a maximum-minimum pair disappears or is created determines 
the characteristic of the transitions. Using the charts of morphological transitions of fixed- 
point potentials, one can easily see the transitions the membranes may undergo. When a 
minimum disappears at the point farthest away from the origin, one can say the membranes 
undergo transition from a bound state to an unbound state. Note that in our calculation, 
there is no indication that a minimum disappears at infinity or is created from infinity. A 
minimum is created or disappears at finite z ,  the farthest one is z = 6.923 when ps = 0.7979 
and a2U/azz = 1.363 x in series 2. When a minimum and a maximum approach one 
another and then annihilate a2U/az2 disappears, the system goes to another bound state or 
to infinity, but the average separation z never becomes continuously divergent. The result of 
nonlinear renormalization group theory is 1 - (T - 7'J@ @ re 1 [Z, 131. The disappearance 
of a minimum or a maximum or a minimum-maximum pair can also cause a jump from a 
bound state to another bound state. In all series, a single extreme disappears or is created 
only far from or near to the origin, while a pair of extremes can disappear or be created in 
the whole range. The bifurcations in the parameter space are unexpected. 

In real systems, two natural cut-offs-, the short cut-off, and L .  the long-range cnt- 
off-are involved. Renormalization may be cut off somewhere, so the fixed-point potentials 
may not tell the whole story. 

Conclusion and discussion 

Broken symmetry and a finite non-renormalizable region can irreversibly influence the 
renormalization. To incorporate this a new procedure has been suggested and an example 
realizing it has been given in the framework of linear renormalization group theory. The 
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morphological transitions of the fixed-point potentials and the bifurcations in the parameter 
space are indeed impressive. The zero-flow condition is really special, one must treat 
this condition and renormalization carefully. In experiments, both first- and second-order 
transitions from a bound state to an unbound have been observed [14-16]. A Monte Carlo 
experiment also showed that short-range excitations are important [17]. 

The fact that local twisting by a finite rigid region will lead to a long-range part in the 
fixed-point potentials is not trivial. For long-range direct potentials, the potentials will not 
be renormalized at large separation. So it is highly possible that this non-trivial effect of 
local twisting will be preserved in nonlinear theory in which local twisting depends on both 
the direct potential and the specific renormalization procedure used. Hence I believe that 
linear theory incorporates some important points. The induced long-range part may play 
an important role in many similar systems. We can say that under renormalization, a finite 
rigid region can influence the property of a vacuum at infinity. 

Recently, A J Jin and M E Fisher [lo] have developed a new renormalization group 
theory for wetting transitions in d = 2 + 1. They introduced a spatially variant interfacial 
stiffness. Under linear renormalization, they obtained two flow equations. Their equations 
are very similar to the corresponding equations in this paper, the only difference being that 
equation (8) in this paper has an additional item (d - I)f(z). If one follows the procedure 
in this paper and operates a ‘twisted matching procedure’, just like they do, by choosing 
twisting f ( z ) ,  all the results from A J Jin and M E Fisher [lo] can be obtained and, beyond 
these, one can obtain other results and some insights, though the procedure in the present 
paper is quite ad hoc. 

I hope the results of this paper can be tested by experiments. Further study to elucidate 
the effects of the zero-flow condition on renormalization is needed. The idea should also 
be applicable to other similar physical systems. 
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